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Abstract.  Geostatistical simulation makes strong assumptions of stationarity in the mean and the variance over the domain of interest.  Unfortunately, geological nature usually does not reflect this assumption and we are forced to subdivide our model area into stationary regions that have some common geological controls and similar statistical properties.  This paper addresses the significant complexity introduced by boundaries.  Boundaries are often soft, that is, samples near boundaries influence multiple rock types.  

We propose a new technique that accounts for stationary variables within rock types and additional non-stationary factors near boundaries.  The technique involves the following distinct phases: (i) identification of the rock types and boundary zones based on geological modeling and the timing of different geological events, (ii) optimization for the stationary statistical parameters of each rock type and the non-stationary mean, variance and covariance in the boundary zones, and (iii) estimation and simulation using non-stationary cokriging.  The resulting technique can be thought of as non-stationary cokriging in presence of geological boundaries.

The theoretical framework and notation for this new technique is developed.  Implementation details are discussed and resolved with a number of synthetic examples.  A real case study demonstrates the utility of the technique for practical application.

1 Introduction

The most common geostatistical techniques, such as kriging and Gaussian/indicator simulation, are based on strong assumptions of stationarity of the estimation domains. In particular, they are based in a second order stationary hypothesis, that is, the mean, variance and covariance remain constant across the entire domain and they do not depend on the location of the support points but only in the distance between them.

Once estimation domains have been selected, the nature of the boundaries between them must be established. Domain boundaries are often referred to as either ‘hard’ or ‘soft’. Hard boundaries are found when an abrupt change in the mean or variance occurs at the contact between two domains. Hard boundaries do not permit the interpolation or extrapolation across domains. Contacts where the variable changes transitionally across the boundary are referred as soft boundaries. Soft domain boundaries allow selected data from either side of a boundary to be used in the estimation of each domain. 

It is rather common that soft boundaries are characterized by a non-stationary behavior of the variable of interest in the proximities of the boundary, that is, the mean, variance or covariance are no longer constant within a zone of influence of one rock type into the other, and their values depends on the location relative to the boundary. An example is the increased frequency of fractures towards a boundary between geological domains of structural nature. Faults or brittle zones are examples of this transition. The fractures may cause the average to increase close to the boundary. The increase in the presence of fractures will often lead to an increase in the variance closer to the boundary.

Although soft boundaries are found in several types of geological settings due to the transitional nature of the geological mechanisms, conventional estimation usually treats the boundaries between geological units as hard boundaries. This is primarily due to the limitations of current estimation and simulation procedures. We will show that non-stationary features in the vicinity of a boundary can be parameterized into a local model of coregionalization. With a legitimate spatial model, estimation of grades can be performed using a form of non-stationary cokriging. This proposal provides an appealing alternative when complex contacts between different rock types exist. We develop the methodology in the context of mining geostatistics, but it is widely applicable in many different settings.

2 Theoretical Background

The technique involves the identification of stationary variables within each rock type and additional non-stationary components near boundaries for the mean, variance and covariance. For a geological model with K rock types or estimation domains, there are a maximum of 
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 boundary zones to be defined. Then, the continuous random function Z(u) that represents the distribution of the property of interest can be decomposed into K stationary random variables Zk(u) k=1,…,K and a maximum of 
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 non-stationary boundary variables Zkp(u), with k,p=1,…K and Zkp(u)=Zpk(u) (Figure 1). By definition, the non-stationary variable will take values only for locations within the maximum distance of influence of rock type k into rock type p.

The maximum distance of influence orthogonal to the boundary of rock type k into rock type p is denoted dmaxkp. A boundary zone is defined by two distances: dmaxkp and dmaxpk, since there is no requirement that the regions on each side of the boundary are symmetric, that is, dmaxkp( dmaxpk. The modeler using all geological information available and his expertise should establish these distances.

When more than two rock types converge at a boundary, two or more rock types may influence the boundary zone in the adjacent domain. In this case, precedence or ordering rules should determine the dominant boundary zone. Although the behavior of a property near a boundary could be explained by the overlapping of different geological controls, the task of identifying the individuals effects of each rock type and their interactions can be quite difficult. Geological properties are not usually additive and therefore the response of a combination of different rock types is complex. Only one non-stationary factor will be considered at each location. The modeler should put together the precedence rules based on the geology of the deposit. The relative timing of intrusion, deposition or mineralisation events, geochemistry response of the protolith to an alteration or mineralisation process could be used to resolve timing and important variables. If the geological data does not provide sufficient information to establish a geological order of events, a neutral arrangement can be chosen. In this case, the precedent rock type p at a location will be the one to which the distance to the boundary is the minimum over all surrounding rock types.
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Figure 1: Decomposition of a one-dimensional random function Z(u) in two stationary variables Zk(u) and Zp(u), with constant mean and variance, and a non-stationary boundary variable Zkp(u), with a mean and variance that are functions of the distance to the boundary.
STATIONARY AND NON-STATIONARY STATISTICAL PARAMETERS

The mean function of the continuous random function Z(u) for a specific rock type k will be the mean of the stationary variable Zk(u) plus the mean of any corresponding non-stationary variable Zkp(u). The stationary component of the mean (mk) is independent of location and is a constant value. The non-stationary component of the mean (mkp) is a function of the distance to the boundary, dpk(u) and takes values different than zero for locations within the boundary zone defined by rock types k and p. The mean of rock type k is:
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where p is the adjacent rock type that shares a boundary with rock type k and
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 is an arbitrary function that describes the mean as a function of distance to the boundary.

Similarly, the variance of Z(u) for rock type k will be the sum of a constant stationary variance ((k2) due to Zk(u) and the independent non-stationary variance ((kp2) due to Zkp(u). The variance of a random function Z(u) in a rock type k is:
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where p is the adjacent rock type that shares a boundary with rock type k and
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 is an arbitrary function that describes the variance as a function of distance to the boundary.

As with the mean and variance, the covariance structure between two rock types that share a local non-stationary boundary consists of a stationary and a non-stationary component. 
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where h=ui – vi. Since Zk(u) and Zkp(u) are independent random variables, the cross terms are zero, therefore the covariance of Z(u) is the sum of the stationary and non-stationary components. The combination of these components corresponds to a local linear model of coregionalization.

The stationary component of the covariance can be calculated and modeled from data pairs within the internal stationary portion of a rock type, that is ui and vi belong to rock type k, and do not belong to any boundary zone. 

To obtain the non-stationary component of the covariance model we will assume that the shape of the spatial correlation of the non-stationary variable Zkp(u) k,p=1,…,K is stationary and that it can be specified by the modeler. Due to the non-stationary nature of variable Z(u) at the boundary zone, this relative stationary spatial model has to by scaled at each point by a non-stationary mean and variance. The relative standardized variogram model for the boundary zone is:
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where 
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. Expanding and reordering the terms of the squared difference, and since 
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, the previous expression becomes:
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Reordering the terms and replacing the mean and variance by the sum of their stationary and non-stationary components, we obtain an expression for the non-stationary covariance model:
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Currently we assume that the shape, anisotropies and nugget effect of the relative standardized variogram are inputs from the modeler; only the range must be established through an optimization algorithm.
3 Optimization of the Statistical Parameters

We need to find the optimum
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 that fit the distribution of the random variable Z(u) at the boundary zone given the stationary components of mean, variance and covariance, a set of precedence rules and the maximum distances of influence within the rock type model. 

We will consider that the non-stationary components of the mean and variance follow a linear function of the distance to the boundary (dpk). In this scenario, the optimization of the parameter mkp and (kp2 will be equivalent to optimizing estimates of the intercepts at zero distance to boundary: akp and bkp, considering akp= apk and bkp= bpk.

The mean mkp is optimized given that mk is known from the experimental average of data within rock type k, outside any boundary zone. The objective function is:
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where z(ui) is the outcome value at every data location in the boundary zone, Nkp is the total number of data in zone k-p, 
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is the experimental average of all data in RTk and outside any boundary zone, and mkp(ui) is the non-stationary mean at location ui calculated as:
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The optimization of the mean can be achieved by iteratively modified akp (k,p, in a random fashion while accepting all changes in akp that reduce the objective function. This is a simplified version of the simulated annealing formalism. 

The optimum (kp2, will be the one that minimizes the following objective function:
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where r(ui) is the residual value at every location in the boundary zone. 
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is the experimental variance of all data within the stationary region of rock type k and (kp2(ui) is the non-stationary variance at location ui calculated from a linear expression for the intercept  bkp similar to Equation 1. 

Figure 2 shows the stationary and non-stationary mean and variance for a 1D synthetic example. The optimum intercepts akp and bkp are in agreement with the reference. 

To find the optimum covariance model we minimize the following objective function:
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where 
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denote the experimental covariance of the pair located at ui and vi, which is just the multiplication of the two residual values:
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, and CMOD the modeled boundary covariance, corresponding to the sum of the stationary and non-stationary component. 

Finding the optimum covariance model of a boundary zone is equivalent to optimizing the range of the relative standardized variogram scaled by the non-stationary standard deviation. The range is iteratively modified by a random amount until the difference between the experimental and modeled covariance is minimized. For this 1D example, the optimum range of the non-stationary covariance structure (Figure 3) is 6.4 meters, acceptably similar to the 10 meters range of the variogram used to obtain the reference.
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Figure 2: 1D example stationary and optimized non-stationary mean and variance.
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Figure 3: Optimum non-stationary covariance of 1D example (solid line), experimental covariance from pairs within the boundary zone (dots) and original covariance of the non-stationary component used to build the synthetic dataset (line/dots).

4 Estimation in presence of local non-stationary boundaries

The basic linear regression equation for non-stationary simple cokriging is:
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where z*(u) is the estimate at unsampled location u, m(u) is the stationary plus the non-stationary mean value at location u, λα(u) is the weight assigned to datum z(uα), n is the number of close data to the location u being estimated, and m(uα) are the n stationary plus the non-stationary mean values at the data locations. 

To find the optimal weights λα(u),  α=1,…,n the kriging system must be solved:


[image: image30.wmf]1

() (,)(,)with ,1,...,

n

CovCovn

baba

b

lab

=

×==

å

uuuuu


where λα(u),  α=1,.., n are the simple kriging weights, Cov(uα, uβ), α,β=1,.., n correspond to the data-to-data covariances, and Cov(u, uα), α=1,.., n are the data-to-unknown location covariances. In the presence of local non-stationary boundaries, the terms of the data covariance matrix and the vector of data-to-estimate covariances are obtained combining the stationary and non-stationary covariance model components. If both locations are in the same rock type and both are in the same boundary zone, the covariance is the stationary plus the non-stationary covariances; otherwise, it is only the stationary component. If they are in different rock types and both samples are in the same boundary zone the covariance is the non-stationary component only. The covariance is zero in all other cases. 

For the 1D example, the kriging estimates reproduce well the reference, using as conditioning data one of four grid nodes of the reference (Figure 4). 
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Figure 4: Reference versus kriging estimates, 1D example.
5 Application

The rock type model of a porphyry copper deposit in Northern Chile was used to create a reference image with simulated grades (Figure 5). This reference image was sampled in a 100x100 meters grid. The geological model has five rock types and six non-stationary soft boundaries. 
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Figure 5: Section and level maps of the reference used for the 3D application.

The reference intercepts for the non-stationary mean and variance are well reproduced by the optimization subroutines for all boundary zones, as well as the optimum ranges compared to the range used in the transformed unconditional simulation.

The correlation between the estimates and the reference value is around 0.8 for each boundary zone. The reference stationary means of each rock type is reproduced almost exactly by the kriging estimation. The variance of the estimates is lower than the reference, which is expected since kriging has a smoothing effect. The non-stationary behavior of the mean is also very well reproduced by the proposed non-stationary kriging as shown in Figure 6. Although the variance of the estimates in the boundary zone is lower than the reference, as expected, the increasing trend toward the boundary is well reproduced.
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Figure 6: Mean and variance of the kriging estimates versus the reference image at the one of non-stationary boundary zone. Each point corresponds to the average/variance of all grid nodes within a 5 meters interval of the distance to the boundary. 

Cross validation results show that the data are reliably estimated both in the stationary and the non-stationary regions.  In particular, for all data within the non-stationary regions, if compared with ordinary kriging using a typical soft boundary approach, the proposed methodology shows a higher coefficient of correlation (Figure 7).
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Figure 7: Cross validation comparison between the proposed methodology, non-stationary cokriging, and ordinary kriging with soft boundaries.

6 Conclusions

This new technique provides a theoretically robust methodology to handle non-stationary soft boundaries. The non-stationary features of the mean, variance and covariance are parameterized into a legitimate local model of coregionalization. Through this spatial model a non-stationary form of cokriging accounts for the changes in mean and variance at the vicinity of boundaries. The kriging estimates reproduce the non-stationary behavior of the conditioning data at the geological contacts, and it also reproduces the stationary means of each rock type in the model. A decrease in the global variance is due to the smoothing effect of kriging.

By construction, the kriging variance also has a non-stationary component. Since the kriging variance is the missing variability that is reintroduced in simulation, its implementation in the presence of local non-stationary boundaries will be delicate and is part of the future work.
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